Artificial Intelligence in Mobile App Development: Upcoming trends for 2020

This is today’s reality: Artificial intelligence has already made a lot of buzz in the mobile app development industry. More cheap and available screens, easy real-time access to the data robust analysis tools have become even more powerful – all of this is already a normal part of our daily routine in society.

We’re approaching the stage of smart everything

The implementation of Artificial Intelligence is highly varied, depending on specific industries. Chatbots, spam filters, cloud APIs, natural language processing, face recognition robotics and more are expected to be used for many goals,. For example,  installing chatbots into retail screens and POSs, inserting built-in intelligence to popular business applications, and integrating with an environment-aware smart detector. And, what is most important, AI will become such a normal thing in everyday life that it’s already used in small shops and many industrial factories.

AI will become more affordable

Apple is taking a shot at a processor planned exclusively to perform AI-related errands, and it will in the long run be remembered for huge numbers of its smart gadgets, including iPhones and iPads. Curiously, this is one case where Apple isn’t driving the way – partly because it’s playing catch up for lost time. Qualcomm, as of late, discharged the Snapdragon 835 portable processor, which has a module for AI and taking care of man-made brainpower assignments. Snapdragon processors are utilized in numerous Android telephones. Google revealed an AI-related processor back to the Tensor Processor Unit in 2016, in spite of the fact that, until further notice, the chip is utilized in Google server farms for picture acknowledgment and to convey quicker, better query items. Don’t be astounded if Google builds up an AI-centered portable processor  too.

Simultaneously, the cost of sensors keeps on falling, making them a reality for the most costly vehicles and apparatuses, yet for all intents and purposes, can be used for anything – from modern machines, to shoes, to drink bottles. Increasingly reasonable sensors, implanted in everything from apparel to hardware, will add data to a regularly developing system of associated gadgets. For instance, Wearable X reported $299 yoga pants that will use implanted sensors and a versatile application to help yoginis of all capacities to improve their flexibility, etc.. 

Indeed, even the most costly classes of sensors are seeing costs fall. In April, Velodyne reported another, minimal effort strong state LiDAR framework called Velarray, which could make self-driving autos a modern reality. The sensor is equipped for perceiving objects with low reflectivity up to 200 meters away, flaunts improved vertical and flat fields of view than forerunners, and expects to sell for only two or three hundred bucks when delivered in mass volumes. 

We’ll likely begin to see sensors transmitting information on everything from street conditions, to office use, to vehicles, and to modern hardware. Undertakings, which are utilizing more mobile phones and wearables than any time in recent history, should transmit, gather and investigate this information to settle on always making smart choices – and they’ll be needing to do it progressively. Keen hardware representatives with smartphones on the shop should be fixed, sensors cautioning field administration workers with smartphones that they have to make a quick help call.  This is only the tip of the iceberg. 

This new equipment  is clear proof that AI is genuinely turning into an ordinary reality. Be that as it may, while the equipment improvements are basic, the other piece of the story is the product – or the applications. When we gather the information from every one of these sensors, AI will help examine and instruct representatives on the next steps, yet the venture work environment has changed. Representatives have moved away from work area PCs and paper-and-clipboards and are accomplishing increasingly more business on their smartphones. Conventional business application designers must think of AI as far as versatile applications..

What separates mobile apps out from web applications on PCs is their capacity to know about their location and the external world utilizing these sensors. Combining AI with these abilities makes applications significantly more valuable. Here are several cases of AI and machine learning contributions from the sensors that make proposals on what you ought to do alongside with the intensity of a portable application: 

Source: wearablex.com

AI implementation in Healthcare 

Buoy Health is an AI-based symptom and medicine controller that applies computer algorithms to identify and cure sicknesses. The principle : a chatbot receives a person’s symptoms and information from their medical companies.  The AI then leads that person to the right protection in accordance with its analysis. Harvard Medical School already uses Buoy’s AI to diagnose and immediately and more smoothly handle many cases.

Enlitic creates deep learning medical applications to modernize radiology examinations. The AI platform interprets disorganized therapeutic info (radiology pictures, blood analyses, EKGs, patient therapeutic records) to provide doctors with more useful penetration into a patient’s interactive requirements.  

AI implementation in Development 

Komatsu offers a solution, SmartConstruction, that associates work data concerning gear and individuals. SmartConstruction enables clients to review their workplace data by means of automaton or 3D scanning to deliver a 3D model of current conditions, bringing the information into KomConnect to consequently recreate the making of development plans, and afterward transmitting the information into mechanized, driverless, earth-moving vehicles to computerize exhuming. Komatsu’s shrewd machine control can wipe out human mistakes and forestall security perils.. Simultaneously, Komatsu’s versatile application enables clients to see machine data from the Komtrax armada observing framework on their Apple or Android cell phones or tablet gadgets.

AI implementation in Banking 

 

Kasisto has built an AI platform, KAI, which allows banks to create their own personal chatbots and virtual assistants. It’s entrenched in AI logic and human-language recognition and creation, which would imply that it can deal with complex issues about finance and banking service.

 

Here is another example of using AI in financial applications: Simudyne is a tech vendor that applies AI and machine learning to reach thousands of business situations. Simudyne’s program enables financial companies to manage resistance testing examinations and manage the risks for market contamination on huge ranges. The CEO of the corporation announced that the simulation supports investment managers to avoid risks and improve critical debt provisioning for the purpose of making better-informed judgments.

Also we’ve discribed how AI and ML are shaping the Finansical Industry. See our previuos post to understand the complete picture.

How to apply AI in current mobile applications 

Even a few years ago, many revolutionary and innovative technologies needed years to be implemented to business, however, today you can begin easily and reach your goals much more quickly. Business developers all across the globe are already supporting businesses to enhance independence and modernize enterprise processes with restricted resources, by using AI with modern UI design in current applications.

How can developers begin to use artificial intelligence for their applications to enhance UX and reduce the chances of failure:

  1. Real-time and Immediate Alerts
    Traditionally, signals from mobile apps are set on a timer, but AI provides alerts or warnings set on customers’ circumstances or interactive actions.
  2. Custom Notification
    Applications can make smart, personalized notes relied on various operations and actions that are obtained and then interpreted.
  3. Self-Reading
    Apps can read the shopping habits and routines of customers and are able to provide owners with valuable information to aid them in their business operations.
  4. Smart Actions
    Applications that use AI can do even more than “enough” to create a comfortable and safe environment. For example, such an app can turn off an air conditioner or electric outlet even when a person is not in the house.
  5. Streamline the searching process
    When AI is integrated into a search engine it is able to make more habitual and less painful processes for mobile users to fasten a search, suggest searching options and grammar improvements, and amplify voice search.. To sum up, applying Artificial Intelligence (AI) to a mobile app can constantly help to streamline the searching process for mobile users.
  6. Face recognition and authentication
    For the largest app development corporations, fingertips and face recognition are the most common AI technologies. Artificial intelligence reads eye position, nose size, a form of the lips, etc. Those people who are using the latest iPhones are already familiar with facial identification technology. Google goes further with FaceNet. On the broadly applied Labeled Faces in the Wild (LFW) dataset, they reached a new high certainty of 99.63%. Using an AI and a smart algorithm has managed to associate a face to its owner with excellent accuracy.  

As reported by Gartner in the 2019 CIO Survey, the amount of organizations realizing AI technologies has increased 2.7 times from 2015.

Artificial intelligence (AI) is the most discussed technology and one-ups the data and analytics as a ground-breaking technology. In terms of realization, when told about the company’s projections about coming digital technologies and tendencies, 37% answered that they already extended AI. Actually, AI appears in second, behind cybersecurity (88 %). 

The Future of Artificial Intelligence in Mobile App development 

Based on the Statista report, by the year 2025, the growth of the artificial intelligence (AI) software market worldwide will reach $89 billion. However, the embedding of AI in the mobile application is in the initial phases. There is a lot that can still be changed and modified. Your complete UX can be formed by applying AI and then handled in various mobile apps. 

We can see a remarkable increase in AI use in 2020 already. AI has already started to integrate into 5G smartphones which means that the customers can get more privileges of ML and AI to gather, maintain, and handle real-time information. With the purpose of getting the new impressive functions in a mobile app, you should think about choosing mobile developers for your company. Here at KitRUM, we’re always happy to hear from you and help you to get access to the top 5% of most talented application developers.